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Introduction

◮ The challenges in medical data
◮ Data-labelling is challenging even for trained radiologists
◮ Image acquisition protocols may not be well documented

◮ DCE-MRI
◮ An imaging protocol to acquire a series of images by time after an injection of a

contrast agent into the patient
◮ The change of the contrast of the successive images represent the observed tissue’s

blood perfusion dynamics and vascular permeability
◮ Our approach

◮ Use unsupervised feature-learning approach to automatically learn how to classify
different tissue types based on the contrast changes:

◮ Time-series analysis of DCE-MRI contrast change signals using single-layer sparse
autoencoder

Single-Layer Sparse Autoencoder

◮ An algorithm for unsupervised feature learning with symmetrical bi-layer
neural networks of two visible layers (input & output layer), and one
hidden layer (encoding layer) [1], [2]

◮ The activation of each unit in the hidden layer is defined as
f (x) = g(Wx + b),

where
◮ g(z) = 1/(1 + exp(−z)): logistic sigmoid function for a vector z
◮ W : weight vector between visible & hidden nodes, b: bias

◮ The cost function is given as:

Jsparse(W , b) = J(W , b) + β

s2
∑

j=1

KL(ρ ‖ ρ̂j),

where
◮ J(W , b): likelihood cost function between the input & output of the autoencoder
◮ β

∑s2
j=1 KL(ρ ‖ ρ̂j): Kullback-Leibler (KL) divergence to encourage the average

activation of each hidden unit
◮ ρ̂j: activation of each hidden unit, ρ: desired level of sparsity
◮ β: the sparsity penalty term, s2 number of hidden units

Application to Time-series Analysis of DCE-MRI Data

◮ Data
◮ DCE-MRI study of tumors in different organs, where the majority are liver metastases
◮ 46 scans having 40 time-points in each DCE-MRI measurement, each time point

producing an image volume of 256×256×12 voxels
◮ Total of 22,080 (46×40×12) images

◮ Time-series signals

a liver signal a non-liver signal a non-liver signal a signal affected by
motion

Results

◮ Encoder-decoder setting for the time-series analysis

◮ Unsupervised tissue-type classification

T1 liver scan automatic tissue-type
classification

T1 kidney scan automatic tissue-type
classification

◮ Comparison to threshold-based methods

T1 range in heat-map
(0<T1<1200) for an image

of the training dataset

After filtering with the T1
range of the liver for the

image of the training
dataset (500<T1<700)

T1 range in heat-map
(0<T1<1200) for an image

in the test dataset

After filtering with the T1
range of the liver for the
image in the test dataset

(550<T1<900)

◮ An absolute value range varies according to case by case (patient (condition),
measurement pulse sequence, scanning device, etc.), but the contrast change over
time (shape of the signal curves) is more constant

◮ Our method is robuster & more generic, across images of varying circumstances
than the threshold-based methods

Performance Evaluation

◮ Evaluate the performance with
liver tissue classification
◮ Liver is an organ with tissues of

homogeneous characteristics
◮ It is easier to sample the liver-tissues

& non-liver-tissues in a semi-automatic
way than the other tissue types

◮ Although other tissue types give
consistent results as well

◮ 7118 liver-tissues and 18519 non-liver tissues were sampled from a
different dataset (kidney patient scan) than the training dataset (liver
patient scan)

◮ Performance evaluation with Matthew’s correlation coefficient (MCC) (a),
weighted accuracy (b), Number of encoding patterns for liver tissue (c),
for various parameter settings

MCC =
TP × TN − FP × FN

√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

weighted accuracy = βAcc+ + (1 − β)Acc−

Acc+(True Positive Rate) =
TP

TP + FN

Acc−(True Negative Rate) =
TN

TN + FP
,

Conclusions

◮ A robust & generic automatic tissue type classification with single-layer
sparse autoencoder

◮ Performance evaluation for different parameter settings
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